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Abstract. An analysis is made of the tube radius in the entanglement problem of con- 
centrated polymer solutions. The tube radius a is defined as the mean distance between 
nearest segments belonging to different chains. For a moderately concentrated system of 
sufficiently long chains, a is found to be inversely proportional to the segment density p. 
By use. of this result, several problems in the entanglement effect are discussed. 

1. Introduction 

One of the attractive approaches in the problem of the entanglement effect of polymer- 
ized materials is the tube model introduced by Edwards (1967) in the discussion of rubber 
elasticity of highly entangled polymer chains. The tube model was also employed by 
de Gennes (1971) to predict the molecular weight dependence of the self-diffusion con- 
stant and the relaxation time of a chain trapped inside a fixed network. Furthermore, 
the tube model was shown to explain the characteristic feature of the viscoelastic prop- 
erties of concentrated polymer solutions (Doi 1974). 

In the tube model, each chain is assumed to be confined in a certain tube-like region 
due to the topological restriction that chains cannot pass through each other. The tube 
represents the averaged repulsive force exerted by other chains. Thus the many body 
problem of a whole chain system is reduced to the problem of a single chain inside the 
tube, and the concentration of chains is taken into account through tube radius. Hence 
the estimation of the tube radius is an important problem in the theory of the tube 
model. However, the estimation is not as easy as it may seem at first sight. 

Edwards (1967) and de Gennes (1974) have estimated the tube radius a from different 
approaches, but they reached the same result : 

a cc (pb)-’’’ (1) 
where b is the bond length and p is the segment density defined by p = c N ,  c and N 
being the polymer density and the degree of polymerization of the chain respectively. 
However, equation (1) suffers a difficulty if the chains are assumed to be continuous 
Gaussian chains described by the Wiener measure. This may be understood from the 
following consideration : let us consider an ideal Gaussian chain system without excluded 
volume effect. The tube radius should be defined for this system. The whole system is 
specified by a set of functions R,(s), where R,(s) denotes the position of the sth segment 
of the ath chain. Although there is some uncertainty in the definition of the tube radius, 
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a should be given by the average of a certain functional A[R,(s)] representing the appro- 
priate intermolecular separation : 

where Jlr is a suitable normalization constant. From the dimensional analysis, A[R,(s)] 
must be a homogeneous function of first order. Then if we introduce the scaled variables 
R,(.F) = R,(s) /bJN and S = s / N ,  equation ( 2 )  is rewritten as 

a = Jlr n GI?,(S)bJN A[&.F)] exp[ -: Io1 ( z)2 di]. s .  (3) 

Since the statistical weight for w,(S) involves no other parameters than the scaled 
dimensionless concentration c ( ~ , / N ) ~ ,  the functional integral over I?,#) yields a func- 
tion including C ( ~ J N ) ~  only. Hence a must have the following form : 

a = (bJ”bJN3).  (4) 
Equation (1) does not have this form. 

The essential point of the above argument is equivalent to the following requirement : 
if the tube radius is much larger than the bond length, its average should not depend 
on the choice of the component statistical segment and should be invariant under the 
transformation : 

N + N / m ;  b + b J m ;  P + p/m.  ( 5 )  
The meaning of this transformation is that if we combine m segments into one and 
regard this as a new component segment, the number of segments decreases from N to 
N / m  but at the same time the segment length increases from b to bJm.  The invariance 
of a for this transformation may be intuitively understood from figure 1, where the full 
line represents the original flexible chain and the broken line shows the new chain. 
This change does not affect the statistical nature of the system as far as we are concerned 
with the characteristic lengths much longer than the original segment length b.  Hence 
a should be invariant under ( 5 )  as far as a >> b. 

For a high concentration of chains, a becomes comparable with b and the above 
argument cannot apply to this case. In that case, Edwards’ estimation of a seems to 

Figure 1. Illustration of the transformation (5). The case of m = 3 is shown. Figure 1. Illustration of the transformation The case of m = 3 is shown. 
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be plausible and equation (1) may be recovered. However, for a moderately concentrated 
system another expression for a, satisfying equation (4), seems to be needed, which is 
attempted in this paper. 

As is mentioned previously, there is no definite definition for the tube radius. Here 
we employ a simple definition. We define the tube radius as the distance between a 
given segment and its nearest segment of other chains. If such a definition is adopted, 
the mean tube radius is calculated exactly for the ideal Gaussian chain system. The 
calculation method was hinted at by the theory of Ogston (1958) for the evaluation of 
the mean void radius in a random network of rigid rods. 

2. Calculation of the mean tube radius 

To calculate the mean tube radius previously defined, we consider a sphere of radius r ,  
centred on some fixed segment. We first find the probability P(r) that there is no chain 
touching this sphere except for the chain to which the pertinent segment belongs. This 
probability P(r) obeys the equation 

.-,- I -  , dr 

where L(r) dr is the probability of finding a chain which touches the sphere of radius r + dr 
but does not touch that of radius r. If n(r) is the mean number of chains touching the 
sphere of radius r, then A(r) dr is equal to n(r +dr)-n(r). Hence 

To calculate n(r), we imagine an ensemble of random walks whose starting points 
are placed randomly in the three-dimensional space with concentration c. Then n(r) 
is evaluated as the sum of the mean number nl(r) of starting points inside the sphere 
and the mean number n2(r) of random walks which start from outside the sphere and 
touch the sphere in the interval of making N steps. The former is simply equal to 
4ncr3/3. The latter is immediately obtained from the result of the previous paper (Doi 
1975, to be referred to as I). Equation (23) in I indicates the mean number of chains of 
unit concentration, touching the sphere of radius a, starting from outside the sphere. 
Hence n2(r) is c times the expression (23) in 1 with a replaced by r. Thus we have 

n(r) = c(47rr3 + 4 J(+7r)r2b JN + fnrb2N). 

From equations (6) and (7) we have 

P(r) = exp( - n(r)). (9) 

Now we can easily obtain the probability Q(r) dr  that the nearest segments of other 
chains lie in the distance between r and r-tdr. This is equal to the probability that no 
chains touch the sphere of radius r and at least one chain touches the spherical shell 
between r and r+dr .  Hence 

Q(r) dr = P(r)l(r) dr. (10) 
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The function Q(r) indicates the distribution of the tube radius of our definition. Therefore 
the mean tube radius a is 

a = drQ(r)r = 1 jOm dx exp[ - (4nx3 + 8 ~ ~ 0 J . n  + 4nxa2)] (4nx2 + 16x047~ + 4.na2)x. 
(1 1) 

Here 1 = c - 1 1 3  is the mean distance between the centre of mass of chains and 
d = (Nb2/6)'12/1 is the ratio of the mean radius of gyration of the chain to 1. It can be 
readily checked that equation (1 1) satisfies the requirement (4). 

In figure 2, a/l  is plotted against 0. The asymptotic form of all is 

I 
0.0 0.4 0.8 1.2 

(Nb2 /6/21'2 

Figure 2. The molecular weight dependence of the tube radius a. 

The first term in equation (12a) is just the same as the mean distance between the nearest 
points distributed randomly in space with concentration c (Chandrasekhar 1943). This 
is natural because the chain can be regarded as points when the molecular dimension 
bq"  is much smaller than the intermolecular separation 1. On the other hand, the 
result for the long-chain case is more interesting. Equation (12b) shows that a is 
proportional to 13/Nb2 or to p - ' .  This conclusion seems non-trivial. 

The specific p -  dependence of a is closely related to the scaling property of Gaussian 
chains discussed previously. In fact if we assume that a is determined by the segment 
density p = cN only, not separately by c and N, then from the general requirement (4), 
we must have a cc p - l .  

Here it may be worthwhile to examine the applicability of the above result. As is 
discussed in the introductory section, the continuous Gaussian chain model, on which 
the above calculation is based, is appropriate as far as a >> b. Then the p -  dependence 
will be observed under the following condition : 

l/a2 >> b and ts >> 1 (13) 

pb3 << 1 and pb3 JN >> 1. (14) 

or equivalently 
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These conditions are satisfied only when N >> 1. If we tentatively set the conditions as 
a > 10b and U > 1, then N must be larger than lo5, a very large degree of polymeriza- 
tion. Hence the simple relation a a p -  ’ may not be observed for the usual synthetic 
polymers. If N is not very large, the actual situation will be as follows: for relatively 
low concentration, a is given by equation (1 1). In this case a is not a function of p only. 
For high concentration, a becomes comparable with b and the relation of Edwards and 
de Gennes will be recovered. However, this does not mean that use of equation (1) is 
justified in their theories because their theories are based upon the continuous Gaussian 
chain models. From the purely theoretical point of view, it is preferable to use equation 
(1 1) (or other estimation of a satisfying (4)) to be consistent in the theory. 

3. Application to related problems 

In this section, we should like to discuss two related problems of the tube model on the 
basis of the above result. The first is the rubber elasticity of a highly-entangled polymer 
chain system. 

In the pioneering work of Edwards (1967), the rigidity modulus E of this system has 
been predicted to be proportional to p3I2. Recently de Gennes (1974) has made a 
comment on this result, showing that Edwards’ prediction does not satisfy the require- 
ment that the rigidity modulus of an entangled chain system should be smaller than 
that of a cross-linked chain system, in which case E a p 2 .  He concluded that this 
difficulty arises from the soft harmonic potential derived from the pre-averaged tube 
restriction. However, his requirement can be satisfied without improving the tube 
potential if we employ the above obtained relation a a p - l  assuming U >> 1. 

As was clarified by de Gennes, the rigidity modulus is given by 

where eo is the lowest eigenvalue for the diffusion equation in a tube and kBT is the 
Boltzmann constant multiplied by temperature. If we assume a harmonic potential, we 
have eo a bla (Edwards and Freed 1969), and use of the above relation yields E a p 2 .  
As was shown by de Gennes, use of the hard repulsive potential for the tube leads to 
eo a b2/a2, and this yields another dependence of E on p. 

De Gennes’ argument for the estimation of co seems very plausible if the mean tube 
radius a is the most probable value. However, as is suggested by equations (8) and (lo), 
the distribution of the tube radius is a Poisson-type for U >> 1 and its peak is at r = 0. 
Hence the employment of the harmonic potential (which has minimum at r = 0) seems 
to have some physical grounds. However, at this stage, the author has no convincing 
answer for this problem. 

Another application of the present result is the problem of the condition of the 
onset of the entanglement effect. This condition is related to the well known break-point 
in the doubly logarithmic plot of steady flow viscosity q against molecular weight. 
In I, we have discussed the fact that the characteristic molecular weight dependence 
predicted by the tube model breaks down around the critical degree of polymerization 
N ,  satisfying 

(bJN,) /a  = constant. (16) 

Since all depends only on c and b(JN)/I is equal to U J6, this condition is equivalent 
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to CJ, = (N,b2/612)'12 = constant, or 

N ,  a ( ~ b ~ ) - ~ .  (17) 

This conclusion may be compared with Bueche's relation N ,  a p - '  (Bueche 1962). 
His relation has been verified by several viscoelastic experiments for relatively con- 
centrated polymer solutions. However, for relatively low concentration, the experimental 
relation p a Nc-" gives results scattered from a = 0.54 to 0.72 (Onogi et a1 1966). (It is 
also observed that the transition becomes rather diffusive for these concentrations.) 
We expect equation (17) to hold for relatively dilute solutions of very long polymers. 
It should be stressed that though equation (17) has been derived on the basis of some 
ambiguous concept such as the tube length (see I) and tube radius, the result will not 
be altered even if the problem is attacked in a more sophisticated manner (eg Edwards 
and Grant 1973). This may be understood from the following argument. 

We consider free-draining Rouse chains subjected to the constraints that chains 
cannot cross over each other. The inhibition of chain cross-over can be taken into 
account in such a way that if bonds (defined as a line segment connecting the nearest- 
neighbour frictional elements in the same chain) collide, they are repulsed. Thus the 
entanglement effect can be incorporated into the theory without introducing any addi- 
tional parameters such as the hard-core radius of the chain. In so far as the topological 
restriction is imposed, this thin Gaussian chain system is expected to exhibit the charac- 
teristic feature of the entangled chain system. 

In this system, there appear five independent parameters, N ,  b, p ,  k,Tand ((denoting 
the friction constant of a segment). From the dimensional analysis, we find that the 
steady flow viscosity q is written in the form 

( 1 8 )  

We now impose the scaling requirements on this expression. If we combine m segments 
into one, N ,  b and p are transformed according to equation (5 ) .  At the same time, ( is 
transformed into im because of the free-draining condition. We require that q must be 
invariant for this transformation. This requirement restricts the functional form of 9 as 

i 
b 

r1 = -F(N ,  pb3). 

q = -G(N(pb3)'). i J N  
b 

This may be called a similarity rule for the steady flow viscosity of a free-draining Rouse 
chain system. The similarity rule is satisfied for the dilute solution. In fact for the 
dilute solution, we must have q a p ,  which yields q a i N p b 2  = c iN2bZ .  This is just 
the result of the Rouse theory (Rouse 1953). In the Rouse theory, submolecules are 
first assumed as the fundamental relaxing unit, but his final result does not depend on 
the size of the submolecules. The above discussion is just the generalization of this idea. 
We expect that q should not depend on the hypothetical submolecules even in the con- 
centrated polymer solutions. If this expectation is true, then the similarity rule (19) 
indicates that the change in the molecular weight dependence should appear only 
through N ( P ~ ~ ) ~ .  Thus we get equation (17). 

4. Conclusion 

We have calculated the mean tube radius in the entangled chain system based on a 
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simple definition of the tube radius. The result is consistent with the scaling requirement 
which should be satisfied in the continuous Gaussian chain model. The result is then 
applied to the rubber elasticity of a highly entangled chain system and to the steady 
flow viscosity of undiluted polymer solutions. It is found that in the free-draining Rouse 
chain system of relatively low concentration, the critical molecular weight M ,  at the 
onset of the entanglement effect is inversely proportional to the square of the weight 
concentration of polymers. 
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